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Abstract. We propose the multiple LUT cascade as a means to configure an n-
input LPM (Longest Prefix Match) address generator commonly used in routers
to determine the output port given an address. The LPM address generator accepts
n-bit addresses which it matches against k stored prefixes. We implement our
design on a Xilinx Spartan-3 FPGA for n = 32 and k = 504 ∼ 511. Also, we
compare our design to a Xilinx proprietary TCAM (ternary content-addressable
memory) design and to another design we propose as a likely solution to this
problem. Our best multiple LUT cascade implementation has 5.20 times more
throughput, 31.71 times more throughput/area and is 2.89 times more efficient
in terms of area-delay product than Xilinx’s proprietary design. Furthermore, its
area is only 19% of Xilinx’s design.

1 Introduction

The need for higher internet speeds is likely to be the subject of intense interest for
many years to come. A network’s speed is directly related to the speed with which a
node can switch a packet from an input port to an output port. This, in turn, depends
on how fast a packet’s address can be accessed in memory. The longest prefix match
(LPM) problem is one of determining the output port address from a list of prefix
vectors stored in memory. For example, if the prefix vector 01001**** is stored in
memory, then the packet address 010011111 matches this entry. That is, each bit in the
packet address matches exactly the corresponding digit in the prefix vector or there is a
* or don’t care in that digit. If other stored prefixes match the packet address, then the
prefix with the least don’t care values determines the output port address. That is, the
memory entry corresponding to the longest prefix match determines the output port.

An ideal device for this application is a ternary content-addressable memory
(TCAM). The descriptor ”ternary” refers to the three values stored, 0, 1, and *. Unfor-
tunately, TCAM dissipates much more power than standard RAM [1].

Several authors have proposed the use of standard RAM in LPM design. Gupta,
Lin, and McKeown showed a mechanism to perform LPM every memory access [2].
Dharmapurikar, Krishnamurthy, and Taylor propose the use of Bloom filters to solve
the LPM problem [3]. Sasao and Butler have shown that a fast, power-efficient TCAM
realization using a look-up table (LUT) cascade [4].

In this paper, we propose an extension to the LUT cascade realization: a multiple
LUT cascade realization that consists of multiple LUT cascades connected to a special
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encoder. This offers even more efficient realizations in an architecture that is more easily
reconfigured when additional prefix vectors are placed in the prefix table.

We have implemented six types of LPM address generators on the Xilinx Spartan-
3 FPGA (XC3S4000-5): Four different realizations using multiple LUT cascades, one
using Xilinx’s TCAM realization based on the Xilinx IP core, and one using registers
and gates. In addition, we compare the six types of LPM address generators on the basis
of delay, delay-area product, throughput, throughput/area, and FPGA resources used.

The rest of the paper is organized as follows: Section 2 describes the multiple LUT
cascade. Section 3 shows other realizations for the LPM address generators. Section 4
presents the implementations of the LPM address generator using an FPGA. Section 5
shows the experimental results. Section 6 concludes the paper.

2 Multiple LUT Cascades

2.1 LPM Address Generators

A content-addressable memory (CAM) [5] stores 0’s and 1’s and produces the address
of the given data. A TCAM, unlike a CAM, stores 0’s, 1’s, and *’s, where * is a don’t
care value that matches both 0 and 1.

TCAMs are extensively used in routing tables for the internet. A routing table spec-
ifies an interface identifier corresponding to the longest prefix that matches an incoming
packet, in a process called Longest Prefix Match (LPM). In the PLM table, the ternary
vectors have restricted patterns: the prefix consists of only 0’s and 1’s, and postfix con-
sist of only *’s (don’t cares). In this paper, this type of vector is called a prefix vector.

Definition 2.1 An n-input m-output k-entry LPM table stores k n-element prefix vec-
tors of the form V EC1 · V EC2, where V EC1 is a string of 0’s and 1’s, and V EC2

is a string of *’s. To assure that the longest prefix address is produced, TCAM entries
are stored in descending prefix length, and the first match determines the LPM table’s
output. An address is an m-element binary vector for m = �log2(k+1)�, where �a� de-
notes the smallest integer greater than or equal to a. The corresponding LPM function
is a logic function f : Bn → Bm, where f(

→
x) is the smallest address of an entry that is

identical to
→
x except possibly for don’t care values. If no such entry exists, f(

→
x) = 0m.

The LPM address generator is a circuit that realizes the LPM function.

Example 2.1 Table 1 shows an LPM table with 5 4-element prefix vectors. Table 2
shows the corresponding LPM function. It has 16 entries, one for each 4-bit input. The
output address is stored for each input corresponding to the address of the longest prefix
vector that matches it. (End of Example)

2.2 An LUT Cascade Realization of LPM Address Generators

An LPM function can be realized by a single memory. However, this often requires
prohibitively large memory size. We propose functional decomposition [6, 7] to realize
the LPM function with lower storage requirements. For a given LPM function f(

→
x),



Table 1. LPM table

Address Prefix Vector
1 1000
2 010*
3 01**
4 1***
5 0***

Table 2. LPM function

Input Output Address Input Output Address
0000 5 1000 1
0001 5 1001 4
0010 5 1010 4
0011 5 1011 4
0100 2 1100 4
0101 2 1101 4
0110 3 1110 4
0111 3 1111 4
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Fig. 1. Decomposition for the LPM function f
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Fig. 2. LUT cascade

let
→
x be partitioned as (

→
xA,

→
xB). The decomposition chart of f is a table with 2nA

columns and 2nB rows, where nA and nB are the number of variables in
→
xA and

→
xB ,

respectively. Each column and row is labeled by a binary number, and the corresponding
element in the table denotes the value of f . The column multiplicity, µ, is the number of
different column patterns of the decomposition chart. Then, using functional decompo-
sition, the function f can be decomposed as f(

→
xA,

→
xB) = G(H(

→
xA),

→
xB), as shown

in Fig. 1, where the number of rails (signal lines between two blocks H and G) is
�log2 µ�. By iterative functional decomposition, the given function can be realized by
an LUT cascade, as shown in Fig. 2 [8, 9].

Theorem 2.1 [4] An n-input LPM address generator with k prefix vectors can be
realized by an LUT cascade, where each cell realizes a p-input, r-output combinational
logic function. Let s be the necessary number of levels or cells. Then,

s ≤ �n − r

p − r
�, (1)

where p > r and r = �log2(k + 1)�.

2.3 LPM Address Generators Using the Multiple LUT Cascade

A single LUT cascade realization of an LPM function often requires many levels. Since
the delay is proportional to the number of levels in a cascade, we wish to reduce the
number of levels. According to (1), if we increase p, the number of inputs to each cell,
then the number of levels s is reduced. For each increase by 1 of p, the memory needed
to realize the cell is doubled. However, as shown in Fig. 3, we can use the multiple LUT
cascade to reduce the number of levels s while keeping p fixed. For an n-input LPM
function with k prefix vectors, let the number of rails of each LUT cascade be r. First,



partition the set of prefix vectors into g groups of 2r − 1 vectors each, except the last
group, which has 2r − 1 or fewer vectors, where g = � k

2r−1�. For each group of prefix
vectors, form an independent LPM function. Next, partition the set of n inputs into s
groups. Then, realize each LPM function by an LUT cascade. Thus, we need a total
of g LUT cascades, and each LUT cascade consists of s cells. Finally, use a special
encoder to produce the LPM address. Let vi (i = 1, 2, ..., g) be the i-th input of the
special encoder, and let vout be the output value of the special encoder. That is, vi is
the output value of the i-th LUT cascade, where its binary output values are viewed as
a standard binary number. Similarly, vout is the output of the special encoder, where
its binary output values are viewed as a standard binary number. Then, we have the
relation:

vout =
{

vi + (i − 1)(2r − 1) if vi �= 0 and vj = 0 for all 1 ≤ j ≤ i − 1
0 if vi = 0 for all 1 ≤ i ≤ g.

Note that vout is the position of a prefix vector v in the complete LPM table, while i is
the index to the LUT cascade storing v. (i− 1)(2r − 1) is the position in the LPM table
of the last entry of the previous (i − 1)-th LUT cascade or is 0 in the case of the first
LUT cascade. Adding vi to this yields the position of v in the complete LPM table.

Example 2.2 Consider an n-input LPM function with k prefix vectors. When k = 1000
and n = 32, by Theorem 2.1, we have r = 10. Let p = r + 1 = 11. When we use a
single LUT cascade to realize the function, by Theorem 2.1, we need �n−r

p−r � = 22
cells, and the number of levels of the LUT cascade is also 22. Since each cell has
11 address lines and 10 outputs, the total amount of memory needed to realize the
cascade is 211 × 10 × 22 = 450, 560 bits. Note that the memory size of each cell,
211 × 10 = 20, 480 bits, is too large to be realized by a single block RAM (BRAM) of
our FPGA, which stores 18, 432 bits.

However, if we use a multiple LUT cascade to realize the function, we can reduce
the number of levels and the total amount of memory. Also, the cells will fit into the
BRAMs in the FPGAs. Partition the set of vectors into two groups, and realize each
group independently; then, we need two LUT cascades. For each LUT cascade, the
number of vectors is 500, so we have r = 9. Also, let p = r + 2 = 11. Then, we need
�n−r

p−r � = 12 cells in each cascade. Note that the number of levels of the LUT cascades
is 12, which is smaller than the 22 needed in the single LUT cascade realization. Since
each cell consists of a memory with 9 outputs and at most 11 address lines, the total
amount of memory is at most 211 × 9× 12 × 2 = 442, 368 bits. Also, note that the size
of the memory for a single cell is 211 × 9 = 18, 432 bits. This fits exactly in the BRAMs
of the FPGAs.

Thus, the multiple LUT cascade not only reduces the number of levels and the total
amount of memory, but also adjusts the size of cells to fit into the available memory in
the FPGAs. (End of Example)

Fig. 3 shows the architecture of the multiple LUT cascade. The realization with
this architecture is the multiple LUT cascade realization. It consists of a group of
LUT cascades and a special encoder. The inputs of each LUT cascade are common
with other LUT cascades, while the outputs of each LUT cascade are connected to the
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Fig. 3. Architecture of the multiple LUT cascade
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Fig. 4. Detailed design of the LUT cascade

special encoder. Each LUT cascade realizes an LPM function, while the special encoder
generates the LPM address from the outputs of cascades.

For an n-input LPM function with k prefix vectors, the detailed design of the LUT
cascade is shown in Fig. 4, where

→
x i (i = 1, 2, ..., s) denotes the primary inputs to the

i-th cell,
→
d i (i = 1, 2, ..., s) denotes the data inputs to the i-th cell and provides the data

value to be written in the RAM of the i-th cell, r denotes the number of rails, where
r ≤ �log2(k +1)�,

→
c j (j = 2, 3, ..., s) denotes the additional inputs to the j-th cell and

is used to select the RAM location along with
→
x j for write access. Note that

→
c j and

→
d i

are represented by r bits. All RAMs except perhaps the last one have p address lines;
the last RAM has at most p address lines. When WE is high, the

→
c j is connected to the

RAM to write the data into the RAMs. When WE is low, the outputs of the RAMs are
connected to the inputs of the succeeding RAMs, and the circuit works as a cascade to



Table 3. 6-entry LPM table

Address Prefix Vector
1 100000
2 10010*
3 1010**

4 101***
5 10****
6 1*****

Table 4. Truth table for the corresponding LPM function

Input Output LUT
x1 x2 x3 x4 x5 x6 out2 out1 out0 Cascade
1 0 0 0 0 0 0 0 1 Upper
1 0 0 1 0 * 0 1 0 Cells 1
1 0 1 0 * * 0 1 1 and 2
1 0 1 1 * * 1 0 0 Lower
1 0 0 * * * 1 0 1 Cells 3
1 1 * * * * 1 1 0 and 4
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Fig. 5. Single LUT cascade realization and the multiple LUT cascade realization

realize the LPM function. Note that the RAMs are synchronous RAMs. Therefore, the
LUT cascade resembles a shift register.

Example 2.3 Table 3 shows a 6-input 3-output 6-entry LPM table, and the correspond-
ing LPM function is shown in Table 4. Note that the entries in the two tables are similar.
Table 4 is a compact truth table, showing only non-zero outputs. Its input combinations
are disjoint. Thus, the two tables are the same except for three entries.

Single Memory Realization: The number of address lines is 6, and the number of
outputs is 3. Thus, the total amount of memory is 26 × 3 = 192 bits.

Single LUT Cascade Realization: Since there are k = 6 prefix vectors of the
function, by Theorem 2.1, the number of rails is r = �log2 (6 + 1)� = 3. Let the
number of address lines for the memory in a cell be p = 4. By partitioning the inputs
into three disjoint sets {x1, x2, x3, x4}, {x5}, and {x6}, we have the cascade in Fig. 5
(a), where only the signal lines for cascade realization are shown, and other lines such
as for storing data are omitted for simplicity.

The total amount of memory is 24 × 3 × 3 = 144 bits, and the number of levels
is s = 3. Note that the single LUT cascade requires 75% of the memory needed in the
single memory realization.



Table 5. Truth tables for the cells in the multiple LUT cascade realization

Cell 1 and Cell 2 (upper LUT cascade) Cell 3 and Cell 4 (lower LUT cascade)
x1 x2 x3 x4 y1 y2 x5 x6 z1 z2 v1 vout x1 x2 x3 x4 y3 y4 x5 x6 z3 z4 v2 vout

1 0 0 0 0 0 0 0 0 1 1 001 1 0 1 1 0 0 * * 0 1 1 100
1 0 0 1 0 1 0 * 1 0 2 010 1 0 0 * 0 1 * * 1 0 2 101
1 0 1 0 1 0 * * 1 1 3 011 1 1 * * 1 0 * * 1 1 3 110
Other values 1 1 * * 0 0 0 † Other values 1 1 * * 0 0 0 †

Other values 0 0 0 † Other values 0 0 0 †
† depends on values from the other LUT cascade

Multiple LUT cascade Realization: Partition Table 3 into two parts, each with
three prefix vectors. The number of rails in the LUT cascades associated with each sep-
arate LPM table is �log2 (3 + 1)� = 2. Let the number of address lines for the memory
in a cell be p = 4. By partitioning the inputs into two disjoint sets {x1, x2, x3, x4} and
{x5, x6}, we obtain the realization in Fig. 5 (b). The upper LUT cascade realizes the
upper part of the Table 4, while the lower LUT cascade realizes the lower part of the
Table 4. The contents of each cell is shown in Table 5.

Let v1 be the output value of the upper LUT cascade, let v2 be the output value of
the lower LUT cascade, and let vout be the output value of the special encoder. Then,
in Table 5, (z1, z2) viewed as a standard binary number, has value v1, while (z3, z4)
viewed as a standard binary number, has value v2. The special encoder generates the
LPM address from the pair of outputs, (z1, z2) and (z3, z4) :

out2 = z̄1z̄2(z3 ∨ z4),
out1 = z1 ∨ z̄2z3z4,

out0 = z2 ∨ z̄1z3z̄4.

Note that (out2, out1, out0) viewed as a standard binary number, has value vout corre-
sponding to the address in Table 3. The total amount of memory is 24 × 2 × 4 = 128
bits, and the number of levels is 2. Note that the multiple LUT cascade realization re-
quires 89% of the memory and one fewer levels than the single LUT cascade realization.

(End of Example)

3 Other Realizations

3.1 Xilinx’s TCAM

Xilinx [10] provides a proprietary realization of a TCAM that is produced by the Xil-
inx CORE Generator tool [11]. Since a TCAM can directly realize an LPM address
generator, we compare our proposed multiple LUT cascade realization with Xilinx’s
TCAM. In the Xilinx CORE Generator 7.1i, we used the following parameters to pro-
duce TCAMs.

– SRL16 implementation.
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Fig. 6. Realize the address generator with registers and gates

– Standard Ternary Mode: Generate a standard ternary CAM.
– Depth- Number of words (vectors) stored in the TCAM: k.
– Data width- Width of the data word (vector) stored in the TCAM: n.
– Match Address Type- Three options: Binary Encoded, Single-match Unencoded,

and Multi-match Unencoded. We used the Binary Encoded option.
– Address Resolution- Lowest or Highest. We used the Lowest option.

3.2 Registers and Gates

We also compare our proposed multiple LUT cascade realization with a direct realiza-
tion using registers and gates, as shown in Fig 6. We use a register pair (Reg. 1 and Reg.
0) to store each digit of a ternary vector. For example, if the digit is * (don’t care), the
register pair stores (1,1). Thus, for n bit data, we need a 2n-bit register. The comparison
circuit consists of an n-input AND gate and n 1-bit comparison circuits, each of which
produces a 1 if and only if the input bit matches the stored bit or the stored bit is don’t
care (* or 11).

For each prefix vector of an n-input LPM address generator, we need a 2n-bit reg-
ister, n copies of 1-bit comparison circuits, and an n-input AND gate. For an n-input
address generator with k registered prefix vectors, we need k copies of 2n-bit registers,
nk copies of 1-bit comparison circuits, and k copies of n-input AND gates. In addition,
we need a priority encoder with k inputs and �log2 (k + 1)� outputs to generate the
LPM address. If the n-input AND gate is realized as a cascade of 2-input AND gates,
this circuit can be considered as a special case of the multiple LUT cascade architec-
ture, where r = 1, p = 2, and g = k. Note that the output encoder circuit is a standard
priority encoder.

4 FPGA Implementations

We implemented the LPM address generators for 32 inputs and 504∼511 registered
prefix vectors on Xilinx Spartan-3 FPGAs (XC3S4000-5) [12] by using the multiple



Table 6. Four Multiple LUT Cascade Realizations

Design Number of prefix vectors r p Group Level
r6p11 504 6 11 8 6
r7p11 508 7 11 4 7
r8p11 510 8 11 2 8
r9p11 511 9 11 1 12
r: Number of rails
p: Number of address lines of the RAM in a cell
Group: Number of LUT cascades
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LUT cascade, Xilinx CORE Generator 7.1i, and registers & gates. The FPGA device
XC3S4000-5 has 96 BRAMs and 27648 slices. Each BRAM contains 18K bits, and
each slice consists of two 4-input LUTs, two D-type flip-flops, and multiplexers. For
each implementation, we described the circuit by Verilog HDL, and then used Xilinx
ISE 7.1i to synthesize and to perform place and route.

First, we used the multiple LUT cascade to realize the LPM address generators. To
use the BRAMs in the FPGA efficiently, the memory size of a cell in the LUT cascade
should not exceed the BRAM size. Let p be number of address lines of the memory in
the cell. Since each BRAM contains 211 ×9 bits, we have the relation: 2p · r ≤ 211 ×9,
where r is the number of rails. Thus, we have p = �log2 (9/r)	+ 11, where �a	 denotes
the largest integer less than or equal to a.

We designed four kinds of LPM address generators r6p11, r7p11, r8p11, and
r9p11, as shown in Table 6, where the column Number of prefix vectors denotes the
number of registered prefix vectors, the column r denotes the number of rails, the col-
umn p denotes the number of address lines of the RAM in a cell, the column Group
denotes the number of LUT cascades, and the column Level denotes the number of
levels or cells in the LUT cascade.

To explain Table 6, consider r8p11 which is shown in Fig 7. For r8p11, since the
number of rails is r = 8, the number of groups is � 510

28−1� = 2. Thus, we need two LUT
cascades. Since each LUT cascade consists of 8 cells, the number of levels of r8p11 is
8. To efficiently use BRAMs in the FPGA, the number of address lines of the RAM in
the cell is set to p = �log2 (9/8)	+ 11 = 11. Let v1 be the values of the outputs of the



upper LUT cascade, let v2 be the values of the outputs of the lower LUT cascade, and
let vout be the values of the outputs of the special encoder. Then, we have the relation:

vout =
{

v2 + 255 if v1 = 0 and v2 �= 0,
v1 otherwise.

This expression requires 11 slices to implement on the FPGA. After synthesizing and
mapping, r8p11 required 16 BRAMs and 69 slices. From this table, we can see that
decreasing r, increases the number of groups, but decreases the number of levels.

Next, we used the Xilinx CORE Generator 7.1i tool to produce Xilinx’s TCAM.
Since the Xilinx CORE Generator 7.1i does not support TCAMs with 32 inputs and
505∼511 registered prefix vectors, we designed a TCAM with 32 inputs and 504 reg-
istered prefix vectors. After synthesizing and mapping, the resulting TCAM required
8,590 slices. Note that Xilinx’s TCAM requires one clock cycle to find a match.

Finally, we designed the LPM address generator with n = 32 inputs and k = 511
registered prefix vectors using registers and gates, as shown in Fig 6. This design is
denoted Reg-Gates. Note that the number of inputs is 32 and the number of outputs is
9. After synthesizing and mapping, this design required 27,646 slices.

5 Performance and Comparisons

In Table 7, we show the performance of multiple LUT cascade realizations (i.e., r6p11,
r7p11, r8p11, and r9p11), and compare them with Xilinx’s TCAM and Reg-Gates. In
Table 7, the column Level denotes the number of levels or cells in the LUT cascade,
the column Slice denotes the number of occupied slices, the column Memory denotes
the amount of memory required, and the column F clk denotes the maximum clock
frequency. The column tco denotes maximum clock-to-output propagation delay. (It is
the maximum time required to obtain a valid output at output pin that is fed by a register
after a clock signal transition on an input pin that clocks the register). The column tpd
denotes the maximum propagation time from the inputs to the outputs. The column Th.
denotes the maximum throughput. Since the LPM address generator has 9 outputs, it is
calculated by:

Th. = 9 · F clk.

For Reg-Gates, Delay denotes the maximum delay from the input to the output and is
equal to tpd. For multiple LUT cascade realizations and Xilinx’s TCAM, Delay denotes
the total delay, and is calculated by:

Delay =
1000 · Level

F clk
+ tco,

where 1000 is a unit conversion factor.
Consider the area occupied by the various realizations. From the Spartan-3 family

architecture [12], we can see that the area of one BRAM is at least the area of 16 slices
(a slice consists of two “4-input LUTs”, two flip-flops, and miscellaneous multiplexers).

An alternative estimate shows that the area of one BRAM is equivalent to that of
96 slices, as follows. In the Xilinx Virtex-II FPGA, one “4-input LUT” occupies ap-
proximately the same area as 96 bits of BRAM (also containing 18K bits) [13]. Note



Table 7. Comparisons of FPGA implementations of the LPM address generator

Design Level Slice Memory F clk tco/tpd Th. Area Th./Area Delay Area-Delay

(BRAM) (MHz) (ns) (Mbps) (slice) ( Mbps
slice ) (ns) (slice-ns)

r6p11 6 178 48 103.89 24.89 935 4786 0.195 82.64 395.53
(tco)

r7p11 7 116 28 113.77 23.46 1024 2804 0.365 84.99 238.31
(tco)

r8p11 8 69 16 139.93 20.91 1259 1605 0.785 79.57 127.71
(tco) (best)

r9p11 12 99 12 139.08 13.72 1252 1251 1.001 100.00 125.10
(tco) (best) (best) (best)

Xilinx’s 1 8590 22.52 13.48 203 8590 0.024 57.88 497.23
TCAM (tco) (best)
Reg- 27646 58.67 27646 58.67 1621.99
Gates (tpd)
Area: We assume that the area for one BRAM is equivalent to the area for 96 slices

that both “4-input LUTs” and BRAMs of the Virtex-II FPGA are similar to those of the
Spartan-3 FPGA. Thus, we can deduce that one BRAM of the Spartan-3 FPGA occu-
pies about the same area as 192 (= 18 × 1024/96) “4-input LUTs”. If we view one
“4-input LUT” as approximately one-half a slice according to our discussion in the pre-
vious paragraph, we conclude that one BRAM has about the same area as 96 (= 192/2)
slices. Thus, estimates of the area for one BRAM vary between the area for 16 to 96
slices. For this analysis a worst case of 96 slices/BRAM was used.

In Table 7, the column Area denotes the equivalent utilized area, where the area
for one BRAM is equivalent to the area for 96 slices. The column Th./Area denotes
the efficiency of throughput per area for one slice. The column Area-Delay denotes the
area-delay product. The value denoted by best shows the best result.

Xilinx’s TCAM has the smallest delay, but requires many slices. Reg-Gates has
almost the same delay as Xilinx’s TCAM, but requires about three times as many slices
as Xilinx’s TCAM. Note that Reg-Gates requires no clock pulses in the LPM address
generation operation, while the others are sequential circuits that require clock pulses.
Since the delay of Reg-Gates is 58.67 ns, the equivalent throughput is (1000/58.67) ×
9 = 153 (Mbps), which is lower than all others.

All multiple LUT cascade realizations have higher throughput, smaller area, higher
throughput/area, and are more efficient in terms of area-delay than Xilinx’s TCAM.
r9p11 has the smallest area, the highest throughput/area, the most efficient in terms
of area-delay, but has the largest delay. r8p11 has the highest throughput, and has the
smallest delay among all multiple LUT cascade realizations. Furthermore, in terms of
area-delay, r8p11 has almost the same performance as r9p11. Thus, r8p11 is the best
multiple LUT cascade realization that has 5.20 times more throughput, 31.71 times
more throughput/area, and is 2.89 times more efficient in terms of area-delay product
than Xilinx’s TCAM, while the area is only 19% of Xilinx’s TCAM.



6 Conclusions

In this paper, we presented the multiple LUT cascade to realize LPM address generators.
Although we illustrated the design method for n = 32 and k = 504 ∼ 511, it can be
extended to any value of n and k.

We implemented four kinds of LPM address generators (i.e. r6p11, r7p11, r8p11,
and r9p11) on the Xilinx Spartan-3 FPGA (XC3S4000-5) by using the multiple LUT
cascade. For comparison, we also implemented Xilinx’s proprietary TCAM, and Reg-
Gates by using registers and gates on the same type of FPGA. Xilinx’s TCAM has
the smallest delay, but requires many slices. Reg-Gates has almost the same delay as
Xilinx’s TCAM, but requires the largest area and requires about three times as many
slices as Xilinx’s TCAM. All multiple LUT cascade realizations have higher through-
put, smaller area, higher throughput/area and more efficient in terms of area-delay prod-
uct than Xilinx’s TCAM.
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